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Richtmyer-Meshkov instability causes spatially periodic perturbations initially 
imposed on a shock-accelerated, thin gas layer to develop into one of three distinct flow 
patterns. Planar laser-induced fluorescence imaging of the evolving layer, produced by 
a perturbed SF, planar jet in air, shows an apparent flow bifurcation that is observed 
as mushroom-shaped or sinuous-shaped interfacial patterns. Analysis of this nonlinear 
instability growth, accomplished by modelling the flow field as a row of line vortices, 
predicts that the layer thickness grows logarithmically at later times and compares well 
with our measurements. Because the row of vortices is unstable, the model also 
provides an explanation for the appearance of the three observed interfacial patterns. 

1. Introduction 
The instability of an accelerated interface between fluids of different densities is a 

fundamental problem in fluid mechanics. Richtmyer-Meshkov (R-M) instability 
occurs at a perturbed planar interface subjected to impulsive acceleration, such as 
caused by the interaction of a shock wave propagating from a lower-density fluid into 
higher-density fluid, or vice versa (Richtmyer 1960; Meshkov 1969; PCTM Workshops 
1988-93 including, for example, Benjamin 1988). It has similarities to the well-known 
Rayleigh-Taylor (R-T) instability of an interface which is driven by constant 
acceleration, such as gravity (Rayleigh 1900; Taylor 1950; Lewis 1950; Sharp 1984). 
The nonlinear growth of R-M or R-T instability of a single interface produces 
complex flow structures, but when R-M instability occurs at nearby interfaces, the 
coupling between interfaces appears to produce additional complexities including an 
apparent flow bifurcation. We observed this previously unreported bifurcation in 
shock-tube experiments involving the shock acceleration of a thin fluid layer of SF, gas 
imbedded in air (Jacobs et al. 1993). This discovery resulted from applying the 
combination of two innovative experimental techniques (Jacobs 1992, 1993) : (i) 
forming the initial rippled planar interfaces with a laminar gas jet without the use of 
membranes, and (ii) observing the flow with planar laser-induced fluorescence (PLIF) 
imaging. 

Flows evolving from R-M unstable interfaces are of practical interest in applications 
including inertial confinement fusion, projectile acceleration, combustion, and 
astrophysics (Shaner 1984). For example, the pusher shell in an ICF direct-drive target 
is a high-density layer between two lower-density layers, the ablation layer on the 
outside and the fuel within. The ablation/pusher/fuel interfaces are susceptible to R-T 
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and/or R-M instabilities, depending on the acceleration history during the implosion 
(McCall 1983). Another application is the rapid acceleration of a thin projectile by a 
gaseous propellant. Knowledge of the instability growth of a thin layer is vital for 
designing better interfaces for these and related applications. It is also useful for 
interpreting past experiments, and developing fluid simulations to predict interfacial 
mixing more accurately. 

While experiments using liquid/liquid interfaces have successfully measured R-M 
growth (Benjamin & Fritz 1987), previous R-M experiments in gas/gas systems have 
had difficulty both in forming fluid interfaces and in visualizing the flow. Forming a 
massless, discontinuous interface between two gases is difficult. Meshkov (1969) and 
others (PCTM Workshops 1988-93; Benjamin, Besnard & Haas, 1993; Andronov et 
al. 1976; 1983; Brouillette 1989) have performed shock-tube experiments using a 
membrane to separate two gases, initially at  the same pressure but having different 
densities. however, the influence of the membrane on the resulting flow evolution in 
these experiments is believed to be significant and is difficult to assess, making 
comparison with other experimental and computational investigations troublesome. 
Shock-tube experiments designed to avoid membrane effects have used gravitational 
stratification (Brouillette 1989; Cavaillier et al. 1990) to produce membrane-less but 
diffuse interfaces, typically having initial diffusion regions about 1 cm thick. However, 
the diffuse interfaces tend to stabilize all but the longest wavelengths, greatly reducing 
the resulting instability growth rate. This significantly lengthens the time required to 
observe a substantial growth in amplitude. In addition, it increases the unwanted 
influence of shock-tube boundary layers on the flow, and inhibits the generation of 
turbulence. Flow visualization used in most previous experiments has been schlieren or 
shadowgraphy. These methods spatially integrate along the line of sight and suffer 
severely from optical distortion induced by boundary effects which badly obscure the 
free-stream flow. Radiography (Bonazza 1992) is less sensitive to wall effects, and 
provides quantitative data on the interfluid mixing induced by R-M instability. 
However, it also spatially integrates the profile and is therefore of limited use in 
visualizing the interfacial profile. Our experiments overcome the difficulty of creating 
the initial interface by utilizing a laminar gas jet to produce a ‘gas curtain’, which 
avoids the problems of membranes and stratified layers. In addition, we eliminate the 
visualization problem by using planar laser-induced fluorescence (PLIF) imaging 
which measures a two-dimensional cross-section of the flow, unobscured by boundary 
effects. 

The early stage of the R-M instability is described by linear perturbation theory 
(Richtmyer 1960), which shows that an initial perturbation will grow in amplitude at 
a constant rate following transients imposed by shock acceleration. The constant 
growth rate may also be estimated from an impulse model (Richtmyer 1960; Mikaelian 
1990) based on Taylor’s (1950) analysis of the R-T problem. Recent studies (Yang, 
Zhang & Sharp, 1993) describe the precise relationship between the linear theory and 
impulse model. When the amplitude becomes comparable with the perturbation 
wavelength, nonlinear effects including saturation, mode-coupling and secondary 
instabilities dominate this ‘nonlinear regime’. Visually, the intermediate stage of the 
instability of a single interface with large density ratio is observed as spike and bubble 
patterns, where the spikes of higher-density fluid protrude into lower-density fluid. For 
a density ratio of nearly one, the interface evolves into a pattern in which fluid 
interpenetration is symmetric; the shapes of the higher-density and lower-density 
penetrating regions are visually similar. The late stages of R-T growth are well 
modelled by the self-similarity formulation of Youngs (1 984) and the renormalization 
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theory of Glimm, Sharp & Zhang (1991). However, the difficulty in solving the 
nonlinear governing equations precludes analytic solutions for the intermediate, 
nonlinear stage of the R-M instability and its transition into turbulence. We develop 
a simple model aimed at describing the nonlinear instability growth by considering the 
production and transport of vorticity. This model is consistent with our experimental 
observations, and agrees well with our measurements of layer growth. 

This paper describes our experiments with emphasis on the benefits of the gas curtain 
and PLIF (92). Observations of the three flow patterns and measurements of the layer 
thickness are presented in 93. The instability growth is then analyzed in 94, using linear 
perturbation theory combined with a model based on the dynamics of a linear array 
of vortices. 

2. Experimental technique 
We utilized experimental techniques similar to those used by Jacobs (1992) in which 

planar laser-induced fluorescence (PLIF) was used to visualize the flow of shock- 
accelerated cylindrical jets. As mentioned above, using a laminar flow to produce a 
density interface improves on previous experiments which utilized thin membranes to 
separate the gases. In these experiments, pieces of membrane broken by the shock 
impact both disturbed flow development and impaired visualization. In addition, PLIF 
imaging allowed for the acquisition of a cross-sectional view of the nearly two- 
dimensional flow without the obscuring effects of boundary disturbances and slight 
three-dimensionality. Multiframe schlieren imaging was first attempted in this study 
but was abandoned because of these detrimental effects (as will be described later). 

A 4 m long horizontal shock tube with a 75 mm square cross-section (shown 
schematically in figure 1) was used to impulsively accelerate a vertical, nearly planar jet 
of SF,. Mach 1.2 shock waves were produced by the mechanical puncture of Mylar 
diaphragms which initially separated the driver section (pressurized to 103 kPa above 
ambient) from the driven section (initially at ambient conditions) of the shock tube. 
Three He-Ne laser timing detectors measured shock speed immediately upstream of 
the initial SF, layer and triggered flow diagnostics. The test section had schlieren-grade 
windows above and below the portions of the shock tube immediately upstream and 
downstream of the nozzle. 

A nearly planar jet, flowing from a contoured nozzle at the top of the viewing test 
section, produced the SF, layer. Spatially modulating the jet in the horizontal direction 
created initial perturbations. A nearly two-dimensional varicose profile was generated 
by the inlet nozzle shape shown in figure 2, which is a series of 4.76 mm holes with 
5.95 mm spacing connected by a 2.38 mm slot. A 9.52 mm outlet slot placed opposite 
the inlet at the bottom of the test section removed the SF, along with some air to 
prevent contamination of the shock tube. SF, was supplied at a rate of 3.3 1 min-l 
and exhausted at  10 1 min-l. Because exit flow was greater than entering flow, air was 
allowed to enter the shock tube upstream and downstream of the test section. 
Contamination of the shock tube was further minimized by firing a shock soon 
(approximately 10 s) after starting the gas flow. We found this to be the minimum time 
needed to stabilize the jet. The vertical speed of the initial jet (approximately 0.2 m s-l) 
was considerably less than the relative flow velocities generated by the shock 
interaction (approximately 20 m-' s). Thus, the jet flow was inconsequential to the flow 
produced by the shock wave. A schlieren system which passed diagonally across the 
test section monitored the initial flow for stability. The jet was always observed to be 
laminar, although a very small amount of unsteadiness was often apparent. 
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FIGURE 1. Schematic of the experimental apparatus, shown not to scale. The shock tube has a 
75 mm square inside cross-section. 

FIGURE 2. The perturbed, thin layer of SF,/diacetyl flows downward in the shock-tube test section 
from a plenum/nozzle assembly atop, through the test section, and into an exhaust vent below. The 
PLIF probe is a horizontal laser sheet that intersects the thin layer at the illuminated cross-section, 
denoted X-S, which the intensified CCD camera views. The incident shock accelerates the layer from 
left to right, and the observed profiles are displaced downstream from the initial position depicted in 
this diagram. The profile of the flow seen in the X-S region is smoothed relative to the nozzle profile, 
but the dominant perturbation wavelength (6 mm) remains the same. This schematic diagram is 
shown not to scale. 

The PLIF flow visualization system (shown in figure 1) used a flashlamp pumped dye 
laser (Candela LFDL-8 using Coumarin 120 dye) with its output tuned to 440 nm, 
producing a 200 mJ, 10 ps pulse. The laser beam entered the shock tube through a 
transparent endwall. Cylindrical lenses spread the beam horizontally to a width of 
4 cm, while focusing it vertically to 2 mm to form a laser sheet inside the test section. The 
laser sheet illuminated a cross-section of the SF, layer which was seeded with one part 
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diacetyl vapour per hundred parts SF,. Diacetyl is a fluorescent dye which absorbs 
light at 420-450 nm, and fluoresces with a peak at 470 nm (Epstein 1974). A gated, 
intensified CCD camera (Cohu 48 15 with LANL intensifier) captured the resulting 
fluorescent image through a window in the bottom of the test section. A frame grabber 
(EPIX) and camera synchronization support card (Big Sky Software) installed in a 
microcomputer (IBM PC/AT) captured and digitized the image. A 5 ps gate length 
on the camera was used to reduce image blurring caused by the layer’s movement 
during capture, and long-pass filters (Schott Glass GG455) blocked the original laser 
light so that only fluorescent light was recorded by the camera. One frame of the 
moving flow was captured per event. In addition, initial conditions were recorded 1 s 
before shock arrival, whenever both initial conditions and shock-accelerated flow were 
within the camera’s view. The laser’s maximum repetition rate (approximately 4 Hz) 
was too slow to allow the recording of both initial conditions at shock impact and 
subsequent flow. 

Diacetyl was used in these experiments as a tracer to track the location of SF,, but 
because SF, and diacetyl diffuse at different rates, the effectiveness of diacetyl as a 
tracer is arguable. However, good comparison between recent experiments using 
Rayleigh scattering (Budzinski 1992, see also the preliminary account in Budzinski, 
Zukoski & Marble 1992) and similar experiments utilizing diacetyl (Jacobs 1992), 
demonstrate the effectiveness of diacetyl as a tracer gas for SF, in these types of 
experiments. 

3. Observations 
We observed three flow patterns, described in detail below and pictured in figures 

3-5, by visually creating ensembles of images from approximately 100 PLIF images. 
Although the patterns in figures 3-5 are displayed as sequences of images, each image 
corresponds to a different experimental event. Adjusting the trigger delay to the 
laser/camera system controlled the time of each image. Thus, visual judgement 
determined the classification of each image. 

The three instability modes appear to be randomly occurring in that we could 
neither predict nor control which mode would appear during a particular experiment. 
Repeated observations at the same time and location after shock impact showed 
different modes. Approximately 50 YO of the images can be assembled into a sequence 
represented by figure 3, denoted ‘upstream mushrooms’. In this sequence the 
perturbed layer forms a series of mushroom-shaped features oriented opposite to the 
shock direction (i.e. upstream). However, about 10 Y of the images can be assembled 
into sequences like that in figure 4, in which the flow forms mushrooms oriented in the 
shock direction (downstream). The remaining 40% of the PLIF images form a 
sequence such as depicted in figure 5,  in which the flow forms a sinuous shape devoid 
of vortex formation until late in the evolution process (i.e. about 1 ms after shock 
interaction). No PLIF image taken at a time less than 1 ms after shock interaction 
exhibits more than one type of disturbance. 

The three modes of instability evolve from nearly identical initial conditions. The jet 
technique produces predominantly two-dimensional SF, layers modulated with a 
varicose perturbation. Figure 6 depicts several PLIF cross-sections of the initial layer 
(actually this is a time sequence having a 1 s interframe time). Small variations in initial 
layer shape are apparent in these images. These variations occur because the jet was not 
completely steady. As mentioned above, we observed a small degree of unsteadiness 
when monitoring the initial flow with our initial-condition monitoring schlieren 
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FIGURE 3. This time sequence of PLIF images shows clearly one of the three distinct profiles that 
evolve from nearly identical initial conditions. The shock wave has passed from left to right. The 
distance between successive images in the figure does not represent the actual displacement of the 
layer in the shock tube. Because each image is taken on a different event, detailed features do not 
register frame-to-frame. However, the dominant growth features are reproducible. These ‘upstream 
mushrooms’ have the mushroom caps oriented opposite to the direction of shock-wave motion. 
Darker regions indicate stronger fluorescent emission and therefore higher concentration of 
SF,/diacetyl. The time of each frame after shock impact with the layer is: (a) 137 ps, (b) 241 ps, (c)  
339 ps, (d) 440 ps, (e) 582 ps, (f) 741 ps, (g) 937 ps. 

FIGURE 4. The ‘downstream mushrooms’ are similar to the upstream mushrooms of figure 3 but 
oppositely directed. They occur rarely in our experiments. Like upstream mushrooms, they appear 
to be driven by vortex pairs and produce mixing by entraining the ambient air within the SF, test 
gas. The time of each frame after shock impact with the layer is: (a) 241 ps, (b) 396 ps, (c)  744 ps, 
(d) 893 ps. 

system. Thus, although our technique produced a largely reproducible initial flow, 
small uncontrollable variations in the initial layer shape were also present. We believe 
that the small differences in the initial shape produce the large differences observed in 
subsequent flows, as shown in figure 3-5. As mentioned earlier, the speed of the initial 
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FIGURE 5. Sinuous evolutions appear to lack vortices until late times, and thereby mix the gases less 
effectively than mushroom profiles. The time of each frame after shock impact with the layer is: (a) 
148 ps, (b) 194 ps, (c) 238 ps, ( d )  438 ps, (e)  537 ps, cf) 790 ps, ( g )  942 ps. 

FIGURE 6. PLIF images of initial SF, layer revealing the small variations in shape. This is a time 
sequence having a 1 s interframe time. 

jet flow is much less than the post-shock flow, so we expect the initial velocity field to 
be unimportant. 

Immediately after shock passage the three modes of instability evolve similarly. The 
perturbations on the upstream surfaces grow while the downstream perturbations 
invert phase and then grow, changing the initial varicose layer profile into a thinner 
sinuous one. In the sequence depicted in figure 3, the upstream edge of the layer 
initially grows at a faster rate than the downstream edge, producing cusps oriented in 
the upstream direction which are reminiscent of the bubble and spike patterns observed 
in single-interface R-T and R-M instabilities. In figure 4 the layer evolves similarly to 
figure 3 but in the opposite direction, producing cusps facing downstream. The 
location of the cusps in figure 4 corresponds to the thin region of the initial layer. Thus 
they are 180" out of phase from the sequence shown in figure 3. In the sinuous sequence 
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FIGURE 7. PLIF image taken with the laser sheet thickness increased from 0.2 to 2.7 cm in order 
to demonstrate the two-dimensionality of the flow. 

(figure 5 )  the boundaries grow at comparable rates, thus retaining the symmetry of the 
sinuous shape. 

The cusps of figure 3 further evolve into lobes, eventually forming vortex pairs which 
propagate upstream, against the flow in the shock tube. Similarly, more slowly growing 
vortex pairs develop in figure 4 which travel in the opposite direction. Note that the 
downstream-facing mushrooms develop in regions having significantly less SF, than 
the upstream mushrooms. Thus the downstream-propagating vortex pairs entrain 
noticeable amounts of air. In figure 5 the sinuous mode grows symmetrically without 
the appearance of vortices. 

The three modes develop into turbulent flow in slightly different ways. Late in the 
process the upstream mushrooms have grown to a point where they begin to interact 
with neighbouring vortex pairs creating a more turbulent flow. The downstream 
mushrooms interact at a later time because of their delayed growth. In the late stages 
of the sinuous sequence vortices also begin to appear randomly during its transition 
into a turbulent flow. The Reynolds number of the flow can be estimated using the 
perturbation wavelength (z 6 mm) as a length scale, the instability growth rate 
(z 15 m s-') as a velocity scale, and either the viscosity of air (0.15 cm2 ss') or SF, 
(0.025 cm2 s-'), yielding Re(v,,,) = 6000 and Re(v,.G) = 36000. 

Through the layer's early to intermediate time of development, the flow remains 
predominantly two-dimensional. This is shown in figure 7, where the thickness of the 
laser sheet was expanded to 2.7 cm, while the flow was observed at an angle nearly 
perpendicular to the sheet. Vertical variance is apparent; however, the length scale of 
this variation is significantly longer than that of the predominantly two-dimensional 
features. Furthermore, the vortex formation and pairing, which governs flow 
development, appears to be nearly uniform along the vertical axis. 

Figure 8 is a sequence of schlieren images of the evolving layer taken from a similar 
perspective as the PLIF images described above. Notice that although there is strong 
evidence of a developing periodic structure in the layer, there is no indication of the 
mushroom or sinuous shapes observed in the PLIF images. In addition, in the schlieren 
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FIGURE 8. Multiframe schlieren image of the evolving layer which shows periodic structure, but 
no indication of the patterns observed in figures 3-5. Flow is from right to left. Interframe time is 
40 ps. 

view the layer appears to be significantly thicker (perhaps by an order of magnitude) 
than it evidently is, as observed in the PLIF images. These differences are probably due 
to edge effects near the shock-tube windows obscuring the flow. In addition, a slight 
tilting of the layer similar to that which occurs with shock-accelerated cylinders (Jacobs 
1992, 1993) could also cause the schlieren-viewed layer to appear much thicker than it 
really is. 

The accelerated gas layer is pushed downstream by the flow behind the shock wave. 



32 J .  W. Jacobs, D. G .  Jenkins, D.  L. Klein and R. F. Benjamin 

41) i A 
0 

0 100 200 300 400 500 600 

Time (p) 

FIGURE 9. Plot of the mean downstream displacement of the layer. The line is a linear curve fit of the 
data yielding a translational velocity of 96 m s-I. 0, Upstream mushroom pattern; a, downstream 
mushroom pattern; 0, sinuous pattern. 

This is observed in figure 9 which shows the mean downstream displacement of the 
layer (found by averaging the mean displacement of the downstream peaks with those 
of the upstream peaks), plotted versus the time interval from predicted shock impact. 
notice that these early time data fall on a straight line, indicating a constant 
translational velocity of 96 m s-l. This is slightly less than the piston velocity (as 
calculated from the shock speed, assuming a completely air-filled shock tube, = 106 f 
2 m s-l). Also note that the trajectory line does not pass through the origin, indicating 
that the time at which the constant translational velocity is initiated (i.e. the time of the 
impulsive acceleration) differs from the predicted shock impact time by approximately 
39 ps. This difference may partly be due to error in the prediction of the shock impact 
time caused by the incomplete removal of SF, from the shock tube. Note that if the jet 
fluid was not completely removed, the air upstream of the jet would probably be 
contaminated with SF,. This would produce a slightly lower shock speed in that region, 
and thus a slight delay in the shock arrival time. However, the offset in figure 9 is more 
likely an indication of the finite time required to accelerate the layer. The layer is not 
accelerated to its final velocity immediately upon shock impact. The acceleration 
process occurs over a short, but finite, period of time during which the incident shock 
wave and generated reflected waves reverberate through the layer. This process occurs 
over many reflections. However, because the strengths of the reverberating waves 
decay quickly, the acceleration time can be reasonably estimated by the time it takes 
the incident shock wave to travel across the layer and reflect back as an expansion. A 
one-dimensional calculation of this process yields 17 ps for the transit of the initial 
shock wave through the layer, and an additional 15 ps for the transit of the reflected 
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FIGURE 10. Plot of the growth in thickness of the layer. The curve marked ‘Vortex model’ is obtained 
using equation (36), and ‘Linear theory’ corresponds to equation (39), both evaluated with estimates 
of the experimental parameters. 0, Upstream mushroom pattern; A, downstream mushroom 
pattern; 0, sinuous pattern. 

expansion wave back through the compressed layer. This gives a total of 32 ps as an 
approximation for the time necessary to accelerate the layer, which agrees well with the 
measured offset in figure 9. 

Figure 10 shows the growth of the width of the perturbed layer, defined as the 
average distance between its leading and trailing edges. Note that the time scale in this 
plot is corrected by the measured time offset found from figure 9. There is significant 
scatter in the data; however, the layer width measured from runs showing upstream 
mushroom behaviour appears to grow significantly faster than those exhibiting the 
other patterns. The error in these measurements is estimated to be less than the symbol 
size used. Therefore, the observed scatter in this plot is probably the result of the small 
differences in the initial conditions (as described above) that also produce the large 
differences we observe as different patterns. The time behaviour of layer thickness 
shows little (if any) of the linear growth stage normally expected for early-time R-M 
instability. This is not surprising considering that the initial amplitude of the 
perturbations in our experiments is comparable to the wavelength. The shape of the 
observed growth curve suggests that nonlinearity has a strong influence during the 
middle to late stages of our observations. 

4. Interpretation and analysis 
The development of the observed patterns shown in figures 3-5, particularly the 

dominance of the vortices in these images, suggests that vortex dynamics may be 
utilized to model the intermediate and late time instability. Vorticity is initially 
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deposited in the layer by the misalignment of pressure and density gradients which 
occurs during the shock interaction and eventually evolves into vortices. In this section 
we develop a model, based on the dynamics of a row of vortices, which describes the 
intermediate and late time behaviour of a shock-accelerated thin fluid layer. The model 
is heuristic, and therefore intended only to provide insight into the flow physics and to 
estimate the growth of the layer width. Because the strength of these vortices is 
determined during the shock interaction, we must first look at the initial stages of the 
instability, in order to obtain estimates of these strengths. 

The interaction process is a complicated one. The incident shock wave first impacts 
the upstream interface, generating vorticity on that boundary as it passes through it. 
This interaction produces a reflected wave (a shock) which travels back upstream and 
a transmitted wave (another shock) which continues to travel downstream and impact 
the second interface. This second interaction generates reflected and transmitted waves 
(reflected expansion and transmitted shock) and additional vorticity. At this point the 
incident shock wave has passed through the layer, but the interaction process is not yet 
complete. The expansion wave generated by the interaction of the incident shock with 
the downstream interface travels back upstream and impacts the upstream interface, 
depositing additional vorticity on that interface. Part of this wave is then reflected 
again to further modify the vorticity on the downstream interface, and so on. 
Therefore, the interaction of a shock wave with the layer generates a succession of 
reverberating waves. Furthermore, an accurate estimate of the circulation deposited by 
this interaction must include the effects of these waves. 

Richtmyer’s (1960) impulse model, although simplistic, is well suited to estimate the 
vorticity generated during the entire interaction process. The model assumes 
incompressible flow and approximates the series of interactions as impulsive 
accelerations, and thus uses the final layer velocity as the input parameter which 
specifies the total impulse strength. This model is an obvious simplification of what is 
in reality a very complex interaction process. However, it has been shown to provide 
good accuracy when compared with results from shock-tube experiments. In contrast, 
an analysis based on correctly modelling only a single interaction of the shock wave 
with each interface, more accurately predicts the vorticity generated by this single 
interaction, but cannot accurately predict the final vorticity distribution because it does 
not model the entire interaction process. 

4.1. Instability of an impulsively accelerated layer 
Following the analysis of Richtmyer (1960) we assume that the early time behaviour of 
the shock-accelerated layer (providing that the initial amplitude is sufficiently small) 
may be suitably described by the linear instability of an impulsively accelerated fluid 
layer. Let us first consider a system of two incompressible and initially irrotational 
fluids of density p1 and pz, and velocity potentials and #2 (where u = V#), separated 
by a nearly planar interface with perturbation 7 (figure 11 a). The equations which 
govern the growth of infinitesimal disturbances on the boundaries of the layer are 

V2# = 0 
in each of the two fluids, with 
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FIGURE 11. Schematic showing the configuration analysed using linear stability theory for 
(a)  single, and (b) double interface systems. 

on y = 0, where p is pressure, g is the acceleration, and Po is a constant, equal to the 
pressure at the interface in the unperturbed rest state. A periodic perturbation on the 
interface of the form 

7 = a(t) cos kx (4) 

( 5 )  

then requires the following velocity potentials in the two fluids: 

q51 = b(t) e-ky cos kx, q52 = - b(t) eky cos kx, 

which when substituted into the interfacial conditions (2) and (3) yield 

daldt = - kb, 

dbldt = - Aga, 

where A = coz-P1)/c02+P1) (8) 

is the Atwood number. 
Equations (6)-(8) can be combined to yield an ordinary differential equation for a(t) : 

d2a/dt2 = kAga. (9) 

For R-M instability, the acceleration g can be written as the product of a velocity jump 
and a Dirac delta function (i.e. g = AVs(t)> allowing (9) to be easily integrated. Thus, 

(10) 

where A V  is the velocity change induced by the impulsive acceleration and a, is the 
amplitude of the initial perturbation. Notice that a disturbance on a light-heavy 
interface (thus having positive Atwood number) will grow linearly with time, while one 

daldt = kA A Va,, 
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on a heavy-light interface (having negative Atwood number) will invert phase before 
growing. 

Now consider a planar fluid layer with thickness 2h and density p2 surrounded by 
fluid of density p1 (figure 11 b). Equation (1) still applies in each of the two fluids with 
(2) and (3) now applied on y = h. Periodic perturbations on each of the two interfaces 
of the form 

(1 1) 

now require the following velocity potentials : 

rl = a, (t) cos kx, 7, = a, (t) cos kx 

\ 4, = b, (t) e-k(y-h) cos kx, 

b, + b, sinh ky b, - b, cosh ky +------ cos kx, o'=(l,,,kh 2 sinhkh) 1 
q53 = - b, (t) ek(y+h) cos kx, 

which when substituted into the interfacial conditions, (2) and (3), yield 

dal/dt = - kb,, 

daz/dt = - kb,, 

db,/dt + db,/dt = -A, g(a, -a,), 

db,/dt-db,/dt = - A,g(al +a,), 

where Pz - P1 A -  t - p, tanh kh +p17 

Pz - P1 

p2 coth kh +pl  
A, = 

define two new modified Atwood numbers. Note that in the limit of a very thick layer 
(i.e. kh --f co) A, = A, = A. Equations (13k( 16) can be combined to yield a pair of 
ordinary differential equations for a, and a,: 

(19) 

(20) 

Equations (19) and (20) are consistent with Taylor's (1950) result in which he 
considered the instability of a thin liquid layer (i.e. p1 = 0) under constant acceleration. 
Again writing the acceleration g as the product of velocity jump and a Dirac delta 
function allows for the easy integration of (19) and (20). Thus, 

d2a,/dt2 + d2az/dt2 = kA, g(al - a,), 

d2a,/dt2 -d2az/dt2 = kA,g(a, + az). 

da,/dt+da,/dt = kA, AV(al,,,-a2,,,), 

dal/dt-da,/dt = kA,AV(a,,,+a,,,). 

Using a &function to model the shock interaction with the thin heavy-gas layer 
assumes that the layer is sufficiently thin so that the time difference between shock 
impact of the two surfaces is negligible. Notice that for a varicose type of initial 
perturbation, aZ,,, = -a,,,, = -ao, so 

(23) 

(24) 

da,/dt = daz/dt = kA, AVa,,. 

da,/dt = - da,/dt = kA, A Va,,. 

Similarly for a sinuous type perturbation, a,, ,, = a,, ,, = a,,, and 
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Just as occurs in linear R-M theory for a single interface, a disturbance on the 
light-heavy interface (i.e. the upstream interface in the experiments) will grow linearly 
with time, and a disturbance on the heavy-light interface (i.e. the downstream interface 
in the experiments) inverts phase and then grows. Thus, an initially varicose-shaped 
layer should evolve into a sinuous shape and an initially sinuous shape should evolve 
into a varicose one. 

Equations (23) and (24) differ from the equivalent expression obtained for a single 
interface (equation (10)) in that the modified Atwood numbers A ,  and A,  depend on 
the layer thickness. However, as mentioned earlier, when the layer thickness approaches 
infinity A,  and A ,  approach the standard definition of the Atwood number. Thus for 
sufficiently large values of kh the two interfaces act independently. It is interesting to 
note that as the layer thickness approaches zero, A,  + (‘p, -pl ) /pl  and A ,  --f 0. Thus, 
growth is enhanced for a varicose disturbance on a heavy layer and inhibited for a 
varicose light layer. But for a sinuous layer, growth is always inhibited and is zero in 
the limit of an infinitesimally thin layer. 

4.2. Vortex-dominated instability growth 

A characteristic of the fluorescent images of figures 3-5 is the obvious development of 
vortices and their dominant role in the fluid flow. The importance of vorticity in the 
development of shock-induced flows is well known (Picone & Boris 1988; Hawley & 
Zabusky 1989; Yang, Zabusky & Chern 1990). Vorticity is generated during the shock 
interaction process by the misalignment of pressure and density gradients as governed 
by the two-dimensional vorticity equation, 

where o is the vorticity vector, which is aligned normal to the plane of motion. The 
term on the right-hand side of (25) describes the production of vorticity, so vorticity 
is generated at a rate proportional to the cross-product of the pressure and density 
gradients. In the experiments the dominant pressure gradient is produced by the plane 
shock wave, and the dominant density gradient is at the boundary of the heavy-gas 
layer (as shown in figure 12a). Thus, the vorticity generated by this interaction will lie 
on the boundaries of the layer, and will vary periodically along its length. 

In the model used in the linear stability theory described above, the boundary 
separating the two fluids is sharp, so the vorticity is concentrated in a thin sheet on the 
boundary. The strength of this sheet, y, is equal to the jump in tangential velocity 
across each of the two boundaries. Thus, within the approximations of the linear 
analysis 

(27) 
y1 = -[A,;(l +tanhkh)(al,,-a2,,)+A,~(1 +cothkh)(a, , ,+a, , , ) ]kAVsinkx, \  

y2 = -[A,i(l+ tanh kh) (a,,, -a2,,)-Ac$(l +cothkh) (a1,,+a2,,)] k AVsinkx. 1 
For an initially varicose layer 

y1 = y2 = - (1 + tanh kh) A ,  ka, A Vsin kx, 

y1 = - y2 = - (1 + coth kh) A ,  ka, A Vsin kx ,  

(28) 

(29) 

and for a sinuous layer 
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FIGURE 12. Vorticity is generated by the interaction of the pressure gradient from a shock wave with 
the density gradient at the boundary of the layer (a). The resulting vorticity distribution can be 
roughly approximated as a row of equally spaced vortices (b). 

The jet technique used in our experiments generates a varicose layer with diffuse 
interfaces which cause the same sign vorticity on both sides of the layer to merge and 
become distributed throughout the layer. Thus, the result of the shock interaction is 
not to produce two sheets of vorticity, but a distribution more like a row of diffuse 
vortices with alternating sign, and spacing 7t/k (figure 126). If it is then assumed that 
the vorticity contained in the vortex sheets is concentrated in a row of line vortices with 
strength K, then 

(30) 
I 

27t 7t 
(yl+yz)dx = --(1 +tanhkh)A,AV(a,,,-a,,,), 

K = - r k  1 

which for a varicose initial layer becomes 

(31) 
2 

K = - - ( 1 + tanh kh) A ,  A Va, .  
7t 

Note that even if the interfaces are sharp, the vorticity on each boundary of a thin 
varicose layer will eventually roll up and combine to form a row of vortices each with 
strength roughly equal to that given by (31) .  

A row of line vortices will induce motion given by the stream function 

cosh (ky)  - sin (kx)  I ’ cosh(ky) +sin (kx)  
$ = iKln 

which will distort the layer. Near the vortex cores the induced velocity will act to wrap 
the layer around the vortices, but in the regions between the vortices the induced 
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motion works to push the layer in a direction perpendicular to the row. After a period 
of time, the spreading of the layer will be predominantly caused by the fluid motion 
near x = 0, fn /k ,  f2n/k, ... . The velocity perpendicular to the vortex row is 

a$ cosh(ky) cos (kx) 
ax 

v = --= -kK 
cosh2 (ky) - sin2 (kx)' 

which at x = 0, f n/k, f 2n/k, . . . reduces to 

dv kK u= '=+ 
dt - cosh (ky) ' 

(33) 

(34) 

Because the horizontal component of velocity is zero at these points, (34) can be 
integrated directly to obtain 

Equation (35) describes the displacement of the interface at the points x = 0, +n/k, 
+2n/k, ... . The growth of the layer width is then given by 

(1 + tanh (ikw,)) k2A, A Vu, t + sinh (ikw,)] , 

where w, is a measure of the average initial layer width. Note that for sufficiently large 
values of x, sinh-l (x) M In (2x), therefore, according to this model, the late time growth 
of the layer is logarithmic in time. Also, for a sufficiently thick layer tanh (kw,) M 1, and 
sinh(kw,) M $xp(kw,) so that 

k2A, A Va, t + gxp  (ikw,) , 1 
and at large time 

k2A, A Va, t + exp (ikw,)] . 

(37) 

Equation (36) was evaluated using known or measured values of k, A, and AV(k = 

1.06 mm-', A, = 0.74, A V  = 96 m s-'), and estimates of w, and a, (w, = 2.6 mm and 
a, = 0.43 mm). It is shown in figure 10 along with measurements of the layer width. 
Although there is a substantial amount of scatter in the measurements, the curve passes 
nearly through the middle of the data points. Furthermore the theory is in qualitative 
agreement with the measurements, showing a trend consistent with the data despite the 
scatter. Also plotted for reference in figure 10 is a line showing the growth in thickness 
of the layer if it were governed by linear instability theory. This curve was obtained 
using (23), noting that w M w, +a, +a2, thus 

Wlineartheory = w O + 2 k A t  A t. (39) 

Note that linear theory greatly overestimates the layer thickness, especially at later 
times. 

For a layer with a sinuous type of initial perturbation, the vortex sheet strengths 
given by (29) are equal and opposite. Thus, adding these strengths together and 
integrating, as is done in (30) to obtain the vortex strength, K, yields a vortex strength 
of zero. Consequently, it would appear that a sinuous perturbation produces no 
growth. However, even with diffuse boundaries, the opposite-signed vorticity on each 
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side of an initially sinuous layer will not combine to form a single row of vortices. It 
is, therefore, questionable whether our model applies to situations where a,(O) and 
a,(O) have the same sign. It can be argued that instead of forming a single row of 
vortices, the opposite-signed vorticity on each side of an initially sinuous layer will roll 
up independently, to form a distribution closer to that of a double row. If the spacing 
between these two rows is small (i.e. the layer is sufficiently thin), the motion induced 
by the opposite-signed vortices in this configuration would tend counteract each other, 
and impede growth. Therefore, even though our model may not strictly apply to 
situations where the vorticity on opposite sides of the layer differ in sign, it may provide 
a good approximation to what actually occurs in a sufficiently thin layer. Because we 
have not performed experiments in which opposite-signed vorticity is generated, we 
can only speculate about this outcome. However, this conjecture is in agreement with 
numerical results of Mikaelian (1993), who observed that the instability of a thin 
sinuous layer is one of very slow growth. 

The row of equidistant vortices used to model the flow generated from the layer with 
varicose initial shape is well known to be unstable. Note that this vorticity distribution 
is identical to that of a vortex street with zero width, the stability of which was analyzed 
by von Karma, (see Lamb 1945, p. 225, and references cited therein to von Karman’s 
studies). One mode of instability can be generated by uniformly displacing every other 
vortex along the row, producing a row of vortex pairs, which will cause the entire row 
of vortices to move in a direction perpendicular to the layer. Thus, small perturbations 
to the initial distribution of vortices in our experiments can generate vortex pairs (or 
mushrooms) which travel upstream or downstream. The type of mushroom (upstream 
or downstream) would then be determined by whether the vortex pairing occurs at the 
thick or thin parts of the layer. Because the initial distribution of vorticity is not 
discrete, but is in reality distributed regions of vorticity, a nearly uniform vortex 
spacing will cause the distributed vortex cores to be strained by the induced flow field. 
This stretching will act to pull apart the vortex cores, thus inhibiting roll-up and 
producing what we observe as the sinuous mode. 

5 .  Conclusions 
We have experimentally discovered the apparent bifurcation of a shock-accelerated 

thin gas layer by observing three randomly occurring but reproducible flow patterns. 
Two of these are distinguished by the appearance of upstream- or downstream-moving 
vortex pairs while the third is a sinuous pattern which shows no vortex formation until 
late in the evolution. We believe that the patterns are the result of an instability which 
is sensitive to the shape of the initial layer. Experimental techniques that facilitated this 
discovery are: (i) the use of a planar gas jet to produce membrane-free interfaces, and 
(ii) PLIF imaging to observe a cross-section of the flow without the obscuring effects 
of boundary disturbances. Multiframe imaging (unavailable for our experiments) is 
needed to determine the precise sensitivity to the initial conditions. (Budzinski, 
Benjamin & Jacobs 1994). 

We interpret this phenomenon using an analytical model based on the assumption 
that the vorticity created by the initial shock interaction evolves into a row of line 
vortices. The model uses linear stability theory to predict the strength of the vortices 
which then displace the layer profile by their induced motion. The model predicts that 
the layer thickness grows logarithmically in time at late times and compares well with 
our measurements of the growth of the layer thickness. Because perturbing the location 
of the vortices in the vortex row produces vortex pairs (observed as mushroom 
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patterns) which move upstream or downstream in the shock-tube flow, the vortex 
model also provides an explanation for our observations of the three instability 
patterns. 
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